无码a∨高潮抽搐流白浆,亚洲色偷偷色噜噜狠狠99网,日韩欧美三级电影在线观看,武林HH艳乳欲妇寻艳录

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當(dāng)前位置:首頁  >  技術(shù)文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時間:2021-11-30  |  點(diǎn)擊率:2540

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


天堂v无码亚洲| 久久国产综合色免费观看| 男男做爰猛烈高潮在线观看| 久久国产精品99夜夜嗨| 亚洲激情啪啪啪a6vv| 屄啊啊奥在线看| 人妻激情综合久久久久久久| 国产黄色av一区二区三区| 亚洲美女自偷自拍11页| 日本laurenphilips| 护士在办公室里被躁中文字幕 | 三级片视频在线| 色婷婷在线一区二区三区| 午夜美女被肏屄| 热99re久久精品香蕉| 亚洲av无码乱码在线观看| 女同性黄网AAAAA片| 国产精品无码亚洲一区二区三区| 老农民里老干棒媳妇回来了吗| 国产精品亚洲精品欧美精品| 亚洲福利短视频| 色噜噜久久综合伊人一本| 欧美性视频一区百花视频| 最近免费中文字幕中文高清| 神马午夜电影院久久久久| 青娱乐在线激情| 一区二区三区午夜福利院| 日本乱妇乱熟乱妇乱色a片| 成人网站免费看黄a站视频| 爱爱爱爱看视频| 久久婷婷精品国产电影网| 亚洲欧美精品日韩一区二区| 一区二区三区在线高清国产| 国产 精品亚洲精品第—区| 亚洲av一成人区一区二| 国产综合欧美日韩在线精品| 亚洲码欧洲码一二三四五| 天堂sv在线最新版在线| 欧美精品自拍| 理论片在线观看亚洲精品| 操逼 美女 欧美 亚洲|